Home
Class 12
MATHS
f(x)={[(1-cos Ax)/(x sin x),,x!=0],[(1)/...

f(x)={[(1-cos Ax)/(x sin x),,x!=0],[(1)/(2),,x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1-cos alpha x)/(x sin x), for x!=0,(1)/(2), for x=0 If f is continuous at x=0, then

If f(x)={[(cos x)^((1)/(sin x)),,x!=0],[K,,x=0]} is differentiable at x=0 Then K=

Find the value of 'A', if the function f at (x) = 0 is continuous when f(x) ={((1-cos Ax)/(x sin x)),(1/2):}, ((x ne 0),(x =0))

f(x)=(cos3x-cos4x)/(x sin2x),x!=0,f(0)=(7)/(4) then f(x) at x=0is,x!=0,f(0)=(7)/(4)

if f(x)=(1-cos ax)/(x sin x)" for "x ne 0, f(0)=1//2 is continuous at x=0 then a=

f(x) - (1- cos (ax))/( x sin x) , x ne 0, f(0) = 1/2 is continuous at x = 0 , a =

If f(x)=(cos x-sin x)/(cos x+sin x) then f^(-1)(x)=

f(x)=(1)/(sin x cos x) find ,f'(x)=?

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)