Home
Class 14
MATHS
[" 55."quad " 4"G" a "+(1)/(b)=1" ₹ "en ...

[" 55."quad " 4"G" a "+(1)/(b)=1" ₹ "en b+(1)/(c)=1vec e|,vec a|c+(1)/(a)=?],[[" (a) "1," (b) "2," (c) "(1)/(2)," (d) "0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a vec a vec a]= (A) 1 (B) 0 (C) vec a

The value of [vec a*vec b,vec c']^(-1) is -

If | vec a | = | vec b | = 1, | vec c | = 3vec b * vec c = - (3) / (4) and vec a xxvec c = 2 (vec a xxvec b)

The magnitudes of vectors vec a , vec b and vec c are respectively 1,1 and 2. If vec a x ( vec a x vec c )+ vec b= vec0 , then the acute angle between vec a& vec c is (a) pi/3 (b) pi/6 (c) pi/4 (d) None of these

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec b . vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec c . vec a)/(| vec a|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec c . vec a)/(| vec a|^2) vec a-( vec b . vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec c . vec a)/(| vec c|^2) vec a+( vec b . vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec c . vec a)/(| vec c|^2) vec a=( vec b . vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is a. ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

If vec a,vec b,vec c be three vectors such that |vec a+vec b+vec c|=1,vec c=lambda(vec a xxvec b) and |vec a|=(1)/(sqrt(2)),|vec b|=(1)/(sqrt(3)),|vec c|=(1)/(sqrt(6)), then the angle between vec a and vec b is

If vec r=x_1( vec axx vec b)+x_2( vec bxx vec c)+x_3( vec cxx vec a) and 4[ vec a vec b vec c]=1 , then x_1+x_2+x_3 is equal to (A) 1/2 vecr .( vec a+ vec b+ vec c) (B) 1/4 vecr.( vec a+ vec b+ vec c) (C) 2 vecr.( vec a+ vec b+ vec c) (D) 4 vecr.( vec a+ vec b+ vec c)

If vec r=x_1( vec axx vec b)+x_2( vec bxx vec c)+x_3( vec cxx vec a) and 4[ vec a vec b vec c]=1 , then x_1+x_2+x_3 is equal to (A) 1/2 vecr .( vec a+ vec b+ vec c) (B) 1/4 vecr.( vec a+ vec b+ vec c) (C) 2 vecr.( vec a+ vec b+ vec c) (D) 4 vecr.( vec a+ vec b+ vec c)

If vec r=x_1( vec axx vec b)+x_2( vec bxx vec a)+x_3( vec cxx vec a) and 4[ vec a vec b vec c]=1 , then x_1+x_2+x_3 is equal to (A) 1/2 vecr .( vec a+ vec b+ vec c) (B) 1/4 vecr.( vec a+ vec b+ vec c) (C) 2 vecr.( vec a+ vec b+ vec c) (D) 4 vecr.( vec a+ vec b+ vec c)