Home
Class 12
MATHS
x=sin(2sin^(-1)sqrt((6)/(65)))...

x=sin(2sin^(-1)sqrt((6)/(65)))

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(2sin^(-1)sqrt((63)/(65)))=

sin(2"sin"^(-1)sqrt((63)/(65))) is equal to

sin (2 sin^(-1) sqrt((63)/(65)))=

sin(2 sin^(-1) sqrt(63/65)) =

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

Rectify the error if any in the following "sin"^(-1)4/(5)+"sin"^(-1)12/(13)+"sin"^(-1)33/(65) ="sin"^(-1)[4/(5)sqrt(1-44/(169))+12/(13)sqrt(1-16/(25))]+"sin"^(-1)33/(65) ="sin"^(-1)(56/(65))+"cos"^(-1)sqrt(1-(33/(65))^(2)) ="sin"^(-1)(56/(65))+"cos"^(-1)(56/(65))=pi/(2)

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

Q.29 Find the sum of the series sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(65)))cdots