Home
Class 11
MATHS
" (iii) "tan^(-1)(1)/(x+y)+tan^(-1)(y)/(...

" (iii) "tan^(-1)(1)/(x+y)+tan^(-1)(y)/(x^(2)+xy+1)=cot^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that tan ^(-1)""(1)/(x+y)+ tan ^(-1)""(y)/(x^(2)+xy+1)= cot ^(-1)x.

Prove that tan^(-1)(1/(x+y))+tan^(-1)(y/(x^2+xy+1) )= cot^(-1)x .

Prove the "tan"^(-1) 1/(x+y) + "tan"^(-1) y/(x^2=xy+1) ="tan"^(-1)1/x

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If xy=1 + a^(2) then show that tan^(-1) ""(1)/(a+x)+tan ^(-1) ""(1)/(a+y)=tan ^(-1)""(1)/(a) , x+y+2a ne 0

If xy=1+a^(2) then show that tan^(-1)((1)/(a+x))+tan^(-1)((1)/(a+y))=tan^(-1)((1)/(a)),x+y+2a!=0

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))