Home
Class 10
MATHS
[" 4) "a^(2)=by+cz,quad b^(2)=cz+ax,quad...

[" 4) "a^(2)=by+cz,quad b^(2)=cz+ax,quad c^(2)=ax+by,],[(x)/(a+x)+(y)/(b+y)+(z)/(c+z)quad " @II "quad 4|neg|vec e| pi]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2=by +cz " " b^2=cz+ax and c^2=ax+by , then the value of (x)/(a+x) + (y)/(b+y) +(z)/(c+z) will be

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)/(x+a) + (y)/(y+a) + (z)/(z+c) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2a) + (y)/(y+ 2b) + (z)/(z+ 2c) = ?

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/(x+a) + (b)/(y+b)+ (c )/(z+c ) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+2a) + (b)/(y+2b) + (c )/(z+2c) = ?

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is

If x^(2) : (by + cz) =y^(2) : (cz + ax) = z^(2) : (ax + by) = 1 , then show that a/(a+x) + b/(b+y) + c/(c+z) = 1 .