Home
Class 12
MATHS
" 15.The value of the integral "int(e^(-...

" 15.The value of the integral "int_(e^(-1))^(e^(2))|(log_(e)x)/(x)|dx" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(e^(-1))^(e^(2))|((log)_(e)x)/(x)|dx is (A) (3)/(2)(B)(5)/(2)(C)3(D)5

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

The value of integral int_(e^(-1))^(e^2) |(log_e x)/(x)| dx is :

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is-

int_(e^(-1))^(e^(2))|(ln x)/(x)|dx

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5