Home
Class 12
MATHS
[" aff "A=[[3,-4],[1,-1]]" at reartatios...

[" aff "A=[[3,-4],[1,-1]]" at reartatios "],[qquad A^(k)=[[1+2k,-4k],[k,1-2k]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,-41,-1]] prove that A^(k)=[[1+2k,-4kk,1-2k]] where k is any k integer.

If A=[{:(3,-4),(1,-1):}] then show that A^(k)=[{:(1+2k,-4k),(k,1-2k):}],k epsilon N

If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

If A=[(5,4),(1,2)] and if (A+2I)^(-1)=k_(1)A+k_(2)I then find (k_(1),k_(2)) .

If A = [{:(1,1),(1,1):}] and A ^(100) = 2k^(k) A, then the vlaue of k is

If k,2k-1 and 2k+1 are in the arithmetic progression then k

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

For what value of k are the points (k ,2-2k),(-k+1,2k)a n d(-4-k ,6-2k) collinear?