Home
Class 12
MATHS
[f(x)=cos x-sin x],[" Show that "f(x)*f(...

[f(x)=cos x-sin x],[" Show that "f(x)*f(y)=f(x+y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= [[cos x, -sin x, 0],[sin x, cos x, 0],[0,0,1]] ,Show that f (x) f(y)= f(x+y) .

If f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] , show that f(x).f(y)=f(x+y)

If f(x)=cos(logx) ,show that f(x)f(y)-1/2 [ f (x/y) + f(xy) ]=0

Let F(x)=[cos x-sin x0sin x cos x0001] Show that F(x)F(y)=F(x+y)

F(x) =[[cos x, -sin x, 0],[ sin x, cos x, 0],[ 0, 0, 1]] Show that F(x) F(y)=F(x+y)

If , f(x)="log"((1+x)/(1-x)) ,show that f(x)+f(y)=f((x+y)/(1+xy))

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If f(x)=cos(logx) , then show that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0