Home
Class 11
MATHS
x=log t+sin t,y=e^(t)+cos t...

x=log t+sin t,y=e^(t)+cos t

Promotional Banner

Similar Questions

Explore conceptually related problems

Equations of the tangent and normal to the curve x=e^(t) sin t, y=e^(t) cos t at the point t=0 on it are respectively

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

x=sin t, y= cos 2t.

If w(x,y,z) =x^(2) + y^(2)+ z^(2), x=e^(t), y=e^(t) sin t and z=e^(t) cos t , find (dw)/(dt) .

Solve the following: If x = e^ sin 3t , y= e^cos 3t , then show that dy/dx = - frac{y log x}{x log y}