Home
Class 12
MATHS
Prove that tan^(-1)(3a^(2)x-x^(3))/(a^(3...

Prove that `tan^(-1)(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)x/a`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((3a^2x-x^3)/(a^3-3ax^2))=3tan^(-1)""(x)/a, agt 0 ,(-a)/sqrt3lexlea/sqrt3

If tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))=k tan^(-1)(x/a) then k=

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

tan^(-1)((3x-x^(3))/(1-3x^(2)))

Prove that 3tan^(-1)x=tan^(-1)((3x-x^3)/(1-3x^2))

Write the following in the simplest form: tan^(-1)((3a^(2)x-x^(3))/(a^(3)-3ax^(2)))

Tan^(-1)((3x-x^(3))/(1-3x^(2)))=

Show that tan^-1(frac{3a^2x-x^3}{a^3-3ax^2})=3tan^-1frac{x}{a}

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))