Home
Class 12
MATHS
[" 9.Let "k=1" ',then prove that "sum(n=...

[" 9.Let "k=1" ',then prove that "sum_(n=0)^(oo)(1)/(cos nk*cos(n+1)k)=(cos k)/(sin^(2)k)],[" If "x" and "y" are real number such that "x^(2)+2xy-y^(2)=6" ,find the min "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let k=1^(@), then prove that sum_(n=0)^(88)(1)/(cos nk*cos(n+1)k)=(cos k)/(sin^(2)k)

Let k=1^(@) then prove that sum_(n=0)^(88)(1)/(cos nk cos(n+1)k)=(cos k)/(sin^(2)k)

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Let k=1^@ , then prove that sum_(n=0)^88 1/(cosnk* cos(n+1)k)=cosk/sin^2k

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

Prove that: sum_(k=1)^(100)sin(k x)cos(101-k)x=50"sin"(101 x)

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))