Home
Class 12
MATHS
" 6."|[y+z,x,y],[z+x,z,x],[x+y,y,z]|=(x+...

" 6."|[y+z,x,y],[z+x,z,x],[x+y,y,z]|=(x+y+z)(x-z)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

show that |[y+z ,x, y],[ z+x, z, x],[x+y, y ,z]|=(x+y+z)(x-z)^2

y+z,x,yz+y,z,xx+y,y,z]|=(x+y+z)(x-z)^(2)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that |(y+z, x,y),(z+x, z, x),(x+y, y, z)| = (x+y+z)(x-z)^(2) .

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

By using properties of determinants, prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|=2(x+y+z)^3

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3