Home
Class 7
MATHS
(14)25^((n-1))+100=5^((2n-1))...

(14)25^((n-1))+100=5^((2n-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 25^(n-1) + 100 = 5^ (2n-1) , find the value of n :

If 25^(n-1)+100=5^(2n-1), find the value of n:

If 25^n^(-1)+100=5^(2n)^(-1), find the value of ndot

If 25^n^(-1)+100=5^(2n)^(-1), find the value of ndot

The value of (5.(25)^(n+1) + 25.(5)^(2n-1))/(25.(5)^(2n) -105(25)^(n-1)) is :

.Use the properties of exponents to verify that each statement is true. (a) "(1)/(4)(2^(n))=2^(n-2)," (b) "4^(n-1)=(1)/(4)(4)^(n) (c) "25(5^(n-2))=5^(n), (b) 4^(n-1)=(1)/(4)(4)^(n)

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!) is = (A) 1/(n!2^n) (B) 2^n/n! (C) 2^(n-1)/n! (D) 1/(n!2^(n-1)

The sum of the series 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+…..+1/((n-1)!1!) is = (A) 1/(n!2^n) (B) 2^n/n! (C) 2^(n-1)/n! (D) 1/(n!2^(n-1)