Home
Class 9
MATHS
(2)/(3)(5x-2)-(3x-(3-x)/(2))=(1-x)/(5)...

`(2)/(3)(5x-2)-(3x-(3-x)/(2))=(1-x)/(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(3x-2)/(5x-1)=(3x+1)/(5x+2)

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

(5x)/(3)-(x-2)/(3)=(9)/(4)-(1)/(2)(x-(2x-1)/(3))

Add :5x^(2)-(1)/(3)x+(5)/(2),-(1)/(2)x^(2)+(1)/(2)x-(1)/(3) and -2x^(2)+(1)/(5)x-(1)/(6)

Simplify: (x^(2)-3x+2)(5x-2)-(3x^(2)+4x-5)(2x-1)

((1)/(x-3)-(3)/(x(x^(2)-5x+6)))

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

If 0ltylt2^(1//3) and x(y^(3)-1)=1 then (2)/(x)+(2)/(3x^(3))+(2)/(5x^(5)) +…=

1,1,1(2^(x)+2^(-x))^(2),(3^(x)+3^(-x))^(2),(5^(x)+5^(-x))^(2)(2^(x)-2^(-x))^(2),(3^(x)-3^(-x))^(2),(5^(x)-5^(-x))^(2)]|=

Take away: (6)/(5)x^(2)-(4)/(5)x^(3)+(5)/(6)+(3)/(2)x om (x^(3))/(3)-(5)/(2)x^(2)+(3)/(5)x+(1)/(4)