Home
Class 11
MATHS
lim(x->oo) sinx/x + lim(x->oo) logx/x eq...

`lim_(x->oo) sinx/x + lim_(x->oo) logx/x `equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) xsin(2/x)

lim_(x to oo) sinx/x = ?

If a=lim_(x->oo) sinx/x & b=lim_(x->0) sinx/x Then int (ab log(1+x)+x^2)dx is equal to

lim_(xto oo)(sinx)/(x) is

lim_(x rarr oo)sin x equals

lim_(x->oo)2^xsin(a/2^x)

lim_(x rarr oo)(sin x)/(x)+lim_(x rarr oo)(log x)/(x) equals

lim_(x->oo)(x^2 - sinx)/(x^2-2)

lf lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c then value of a + b + c is

lf lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c then value of a + b + c is