Home
Class 11
MATHS
If a+b+c=0 and omega,omega^2 are imagina...

If `a+b+c=0` and `omega,omega^2` are imaginary cube roots of unity, then `(a+bomega+comega^2)^2+(a+bomega^2+comega)^3=` 3abc (b) 6abc (c) 9 abc (d) 27 abc

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=0 and omega,omega^2 are imaginary cube roots of unity, then (a+bomega+comega^2)^3+(a+bomega^2+comega)^3= 3abc (b) 6abc (c) 9 abc (d) 27 abc

If a+b+c=0 and omega,omega^(2) are imaginary cube roots of unity,then (a+b omega+c omega^(2))^(2)+(a+b omega^(2)+c omega)^(3)=3abc (b) 6abc (c) 9 abc (d) 27 abc

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

(a+bomega+comega^(2))/(c+aomega+bomega^(2))

If omega is the imaginary cube root of unity and a+b+c=0 then show that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3=27abc

omega is an imaginary root of unity. Prove that (a+bomega+comega^2)^3+(a+bomega^2+comega^)^3 =(2a-b-c)(2b-a-c)(2c-a-b)dot

If omega is an imaginary cube root of unity, prove that, (a+bomega+comega^(2))^(3)+(a+bomega^(2)+comega)^(3)=(2a-b-c)(2b-c-a)(2c-a-b)

If omega is the imaginary cube root of 1 then prove that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3 = (2a-b-c)(2b-a-c)(2c-a-b)