Home
Class 12
MATHS
Prove that (b + c -a) (cot.(B)/(2) + cot...

Prove that `(b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cot( A/2)+ cot(B/2) + cot( C/2) = cot( A/2) cot(B/2) cot(C/2)

If A+B+C=pi , prove that : cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)

if A+B+C=pi prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))xx cot((B)/(2))xx cot((C)/(2))

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)

(xii) (b+c-a)(cot 'B/2' + cot 'C/2') = 2a cot 'A/2

If a,b and c be in A.P. prove that cos A cot((A)/(2)),cos B cot((B)/(2)), and cos C cot((C)/(2)) are in A.P.

In a DeltaABC , if cot.(A)/(2)cot.(B)/(2)=c , cot.(B)/(2)cot.(C )/(2)=a and cot.(C)/(2)cot.(A)/(2)=b , then (1)/(s-a)+(1)/(s-b)+(1)/(s-c) equals

In any triangle ABC, prove that: (b-c)cot(A)/(2)+(c-a)cot(B)/(2)+(a-b)cot(C)/(2)=0

Prove that cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2)=(s^(2))/(Delta)