Home
Class 12
MATHS
[987" 32."pi/4y=sin(m sin^(-1)x)," a) "f...

[987" 32."pi/4y=sin(m sin^(-1)x)," a) "f(4x)" and "f(x)],[(1-x^(2))y_(2)-xy_(1)+m^(2)y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos(m sin^(-1)x), show that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .

y = sin (m Sin ^(-1)x ) implies ( 1- x ^(2)) y _(2) - xy _(1) =

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If x=sin((1)/(a)log y), show that (1-x^(2))y_(2)-xy_(1)-a^(2)y=0

If y = sin (m sin^(-1) x), prove that (1 - x^2)y_2 -xy_1 + m^2 y = 0

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0