Home
Class 14
MATHS
int(0)^( pi)log(1+cos x)*dx...

int_(0)^( pi)log(1+cos x)*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Find I=int_(0)^( pi)ln(1+cos x)dx

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=

If|a|lt 1, show that int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a

If|a|lt 1, show that int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a

If|a|lt 1, show that int _(0)^(pi)(log(1+a cos x ))/( cos x)dx =pi sin^(-1) a

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

int_(0)^((pi)/(2))log(cos x)dx=