Home
Class 12
MATHS
[" Heor "" 7.fered "],[qquad =cos^(-1)(1...

[" Heor "" 7.fered "],[qquad =cos^(-1)(1-ab)/(sqrt((c+a^(2))(1+b^(2))]))quad (2010,18)]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^ (- 1) a + tan ^ (- 1) b = (cos ^ (- 1)) (1-ab) / (sqrt ((1 + a ^ (2)) (1 + b ^ (2) )))

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)

sin ^ (- 1) a-cos ^ (- 1) b = sin ^ (- 1) (ab-sqrt (1-a ^ (2)) sqrt (1-b ^ (2)))

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is (a) cos^(-1)(sqrt(14)/(7sqrt(2))) b. cos^(-1)(sqrt(21)/(7sqrt(3))) c. cos^(-1)(2/(sqrt(7))) d. cos^(-1)((2sqrt(7))/(14))

The decreasing order of, A=(Sin^(-1)((1-sqrt(3))/(2sqrt(2)))), B=Cos^(-1)((-1)/sqrt(2)), C=Tan^(-1)((sqrt(3)+1)/(2sqrt(2))) is