Home
Class 9
MATHS
" Patise for "x[y(d^(2)y)/(dx^(2))+((dy)...

" Patise for "x[y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)]=y(dy)/(dx)" an "bar(act)Ax^(2)+By^(2)=1(3)/(8)1

Promotional Banner

Similar Questions

Explore conceptually related problems

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

Find degree and order x(d^(2)y)/(dx^(2))+((dy)/(dx))^(5)-y(dy)/(dx)=3

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

Find the order and degree of the following D.E's (i) (d^(2)y)/(dx^(2)) + 2((dy)/(dx))^(2) + 5y = 0 (ii) 2(d^(2)y)/(dx^(2)) = (5+(dy)/(dx))^((5)/(3)) (iii) 1+((d^(2)y)/(dx^(2)))^(2) = [2+((dy)/(dx))^(2)]^((3//2)) (iv) [(d^(2)y)/(dx^(2))+((dy)/(dx))^(3)]^((6/(5)) = 6y (v) [((dy)/(dx))^(2) + (d^(2)y)/(dx^(2))]^((7)/(3)) = (d^(3y))/(dx^(3)) (vi) [((dy)/(dx))^((1)/(2)) + ((d^(2)y)/(dx^(2)))^((1)/(2))]^((1)/(4)) = 0 (vii) (d^(2)y)/(dx^(2)) + p^(2)y = 0 (viii) ((d^(3)y)/(dx^(3)))^(2) -3((dy)/(dx))^(2) - e^(x) = 4

(d^(2)y)/(dx^(2))=(1)/(1+x^(2)) whenx =0,y=0 and (dy)/(dx)=0

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If x+y= tan^(-1)y and (d^(2)y)/(dx^(2))=f(y)(dy)/(dx) then f(y)=

If e^(y)(x+1)=1 . Show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If y=log(1+sinx)," then "(d^(3)y)/(dx^(3))+(d^(2)y)/(dx^(2))(dy)/(dx)=