Home
Class 12
MATHS
If A^2-A+I=0, then the invers of A is A^...

If `A^2-A+I=0,` then the invers of `A` is `A^(-2)` b. `A+I` c. `I-A` d. `A-I`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^2-A+I=0, then the inverse of A is a. A^(-2) b. A+I c. I-A d. A-I

If A^2-A+I=0, then the inverse of A is a. A^(-2) b. A+I c. I-A d. A-I

If A^(2)-A+I=0, then the inverse of A is: (A) A+I (B) A(C)A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I

If a+i b=c+i d , then

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I

If A is non-singular and (A-2I)(A-4I)=0 , then ,1/6A+4/3A^(-1) is equal to a. 0I b. 2I c. 6I d. I