Home
Class 14
MATHS
Find (dy)/(dx) when y=u^(3) and u=sqrt(6...

Find `(dy)/(dx)` when `y=u^(3)` and `u=sqrt(6x^(2)-2x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : y=x^(3)* sqrt((x^(2)+4)/(x^(2)+3))

Find (dy)/(dx) when : y= (x^(3)* sqrt(x^(2)-12))/( 3 sqrt(20-3x))" when " x=4

Find (dy/dx) when y = 2 u^3 + 1 and u = 1/(x^(2//3))

Find (dy)/(dx) , when: y=(x^(5)sqrt(x+4))/((2x+3)^(2))

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

Find (dy)/(dx) , if x=sqrt(sin2u) and y=sqrt(cos2u)

Find (dy)/(dx) , when: y=(x^(2)sqrt(1+x))/((1+x^(2))^(3//2))

Find (dy)/(dx) , when: y=(sqrtx(3x+5)^(2))/(sqrt(x+1))

Find (dy)/(dx) , when: y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))

Find (dy)/(dx) , when: y=sqrt((x-2)(2x-3)(3x-4))