Home
Class 12
MATHS
If (sinx+a e^x+b e^(-x)+sin(1+x))/(x^3)...

If `(sinx+a e^x+b e^(-x)+sin(1+x))/(x^3)` has a finite limit L as `x rarr 0`,then

Promotional Banner

Similar Questions

Explore conceptually related problems

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

The limiting value of x sin((1)/(x)) as x rarr0 is

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=

lim_(x rarr0)(e^(sin x)-sin x-1)/(x)