Home
Class 12
MATHS
[pi R(4),y=sqrt((1-x)/(1+x))],[,diquad T...

[pi R_(4),y=sqrt((1-x)/(1+x))],[,diquad T_(i-12)d_(12)(T_(21)A_(1)(1-x^(2))(dy)/(dx)+y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sqrt((1-x)/(1+x)),p rov et h a t(1-x^2)(dy)/(dx)+y=0

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x^(2) + y^(2) = t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) , then (dy)/(dx) =

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)