Home
Class 12
MATHS
int(log(1+x))/(1+x^(2))dx=(pi)/(8)log2...

int(log(1+x))/(1+x^(2))dx=(pi)/(8)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

Show that: overset(1)underset(0)int (log(1+x)/(1+x^2))dx= pi/8 log 2 .

" "int(log x)/((1+x)^(2))dx

int(ln x)/((1+ln x)^(2))dx=

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int(log x-1)/((log x)^(2))dx

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

int (log x-1)/((log x)^(2))dx=

int((log x)/((1+log x)^(2)))dx