Home
Class 12
MATHS
" 9."x sqrt((1+y^(2)))dx+y sqrt((1+x^(2)...

" 9."x sqrt((1+y^(2)))dx+y sqrt((1+x^(2)))dy=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of x sqrt(1 + y^(2)) dx + y sqrt(1 + x^(2)) dy = 0 is

The solution of x sqrt(1 - y^(2)) dx + y sqrt(1 - x^(2)) dy = 0 is

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

Solve the following differential equation: x sqrt(1-y^(2))dx+y sqrt(1-x)dy=0

Solve the following differential equations. (i) (dy)/(dx) =(1+y^(2))/(1+x^(2)) (ii) (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2))) (iii) (dy)/(dx) = 2y tan hx (iv) sqrt(1+x^(2))dx + sqrt(1+y^(2))dy = 0 (v) (dy)/(dy) = e^(x-y)+x^(2)e^(-y)

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

Let a solution y=y(x) of the differential equation x sqrt(x^(2)-1)dy-y sqrt(y^(2)-1)dx=0 satisfy y(2)=(2)/(sqrt(3))

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .