Home
Class 12
MATHS
x^(2/3)+y^(2/3)=a^(2/3)...

x^(2/3)+y^(2/3)=a^(2/3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that curves x^(2//3)+y^(2//3)=e^(2//3) and (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 may touch each other if c=a+b .

If x= cosec theta -sin theta and y=sec theta-cos theta, then show that x^(2//3)+y^(2//3)=(xy)^(-2//3)

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

x^((2)/(3))+y^((2)/(3))=10^((2)/(3))

If x^((2)/(3) ) +y^((2)/(3))=10^((2)/(3)) ,then (dy)/(dx)=

If the curves x^((2)/(3))+y^((2)/(3))=c^((2)/(3)) and (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touches each other,then which of the following is/are true?

If c=a+b, then show that the curves x^((2)/(3))+y^((2)/(3))=c^((2)/(3)) and (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 touch each other.

If x+y+z=1, then 1-3x^(2)-3y^(2)-3z^(2)+2x^(3)+2y^(3)+2z^(3) is equal to