Home
Class 12
MATHS
If y^x=e^(y-x), prove that (dy)/(dx)=((1...

If `y^x=e^(y-x),` prove that `(dy)/(dx)=((1+logy)^2)/(logy)`

Answer

Step by step text solution for If y^x=e^(y-x), prove that (dy)/(dx)=((1+logy)^2)/(logy) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CUET MOCK TEST 2022

    XII BOARDS PREVIOUS YEAR|Exercise Question|49 Videos

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).