Home
Class 11
MATHS
lim(x->0)(sqrt(1+sinx)-sqrt(1-sinx))/x...

`lim_(x->0)(sqrt(1+sinx)-sqrt(1-sinx))/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(sqrt(1+sinx)-sqrt(1-sinx))/tanx

Evaluate the following limits: lim_(xrarr0)(sqrt(1+sinx)-1sqrt(1-sinx))/(x)

Evaluate the limits lim_(x to0)(sqrt(1+sinx)-sqrt(1-sinx))/(tanx)

lim_(x rarr 0) (sqrt(1+sinx)-sqrt(1-sinx))/x=

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

Let f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(tanx) , x ne 0 Then lim_(x to 0) f(x) is equal to

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove That : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x epsilon(0,(pi)/4)