Home
Class 12
MATHS
If y=x+tanx , show that cos^2x\ (d^2y)/(...

If `y=x+tanx` , show that `cos^2x\ (d^2y)/(dx^2)-2y+2x=0` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x+tan x , show that cos^2 x (d^2y)/(dx^2)-2y+2x=0

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y=x+tanx , show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0 .

If y= x + tan x , show that cos^2 x (d^2 y)/(dx^2) -2y + 2x =0

If y=sec x-tanx ,show that (cosx)(d^(2)y)/(dx^(2))=y^(2).

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0