Home
Class 12
MATHS
If y=x+tan x, show that cos^2 x (d^2y)...

If `y=x+tan x`, show that `cos^2 x (d^2y)/(dx^2)-2y+2x=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= x + tan x , show that cos^2 x (d^2 y)/(dx^2) -2y + 2x =0

If y=x+tanx , show that cos^2x\ (d^2y)/(dx^2)-2y+2x=0 .

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y=x+tanx , show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0 .

Find the second order derivative of the following functions If y = x + tan x , prove that cos^2 x . (d^2 y)/(dx^2) - 2y + 2x = 0

If y=x+tan x , show that cos^(2) x. (dy)/(dx)=2-sin^(2)x .

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y = tan^-1 x , show that : (1+x^2) d^2y/dx^2+ 2x dy/dx=0