Home
Class 14
MATHS
sqrt(x)+(1)/(sqrt(x))+1=...

`sqrt(x)+(1)/(sqrt(x))+1=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

The slope of the tangent to the curve tan y = ((sqrt(1 + x)) - (sqrt(1 -x)))/(sqrt( 1+ x) + (sqrt (1 -x)) at x = 1/2 is

If x = sqrt3/2 then find the value of (sqrt(1+x) - sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))