Home
Class 11
MATHS
lim(x->0)(cosa x-cosb x)/(x^2) ....

`lim_(x->0)(cosa x-cosb x)/(x^2)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(cos3x-cos x)/(x^(2))cos3x-cos x lim x?0

lim_(x rarr0)(1-cos x)/(x^(2))

Evaluate: ("Lim")_(x->0)((cosa x)^(1//m)-(cosb x)^(1//n))/(x^2)

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

lim_(x rarr 0) (1- cos x)/(x^(2)) is :

lim_(x->0)(sin^2x)/x

lim_(x rarr0)(1-cos x^(@))/(x^(2))

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then