Home
Class 11
MATHS
lim(x->4)(sin(x-1))/(x^3-1)...

`lim_(x->4)(sin(x-1))/(x^3-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largest value of non negative integer a for which lim_(x->1){(-a x+sin(x-1)+a]/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

lim_(x rarr1)(x-1)/(sin(x-1))

lim_(x rarr1)(x-1)/(sin(x-1))

lim_(x rarr1)(x-1)/(sin(x-1))

Evaluate lim_(xto-oo)[(x^(4)sin((1)/(x))+x^(2))/((1+|x|^(3)))].

lim_(x->oo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4