Home
Class 12
MATHS
lim(x rarr2)((x+6)^((1)/(3))-2)/(2-x)=...

`lim_(x rarr2)((x+6)^((1)/(3))-2)/(2-x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 2) ((x+6)^(1/3)-2)/(2-x)=

If L=lim_(x rarr2)((10-x)^((1)/(3))-2)/(x-2), then the value of (1)/(4L)| is

lim_(x rarr2)(x-2)/(x+1)=

lim_(x rarr2)((x+2)^((1)/(2))-(15x+2)^((1)/(5)))/((7x+2)^((1)/(4))-x)

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr2^(-))(ae^((1)/(|x+2|))-1)/(2-e^((1)/(x+2|)))=lim_(x rarr2^(+))sin((x^(4)-16)/(x^(5)+32))

lim_(x rarr2)(x^(2)-3x+2)/(x-2)

lim_(x rarr oo)(2x+1)/(3x-2)

lim_(x rarr2)(x^(2)-3x+2)/(x^(2)+x-6)

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1