Home
Class 12
MATHS
The value of the integral int0^1(dx)/(x^...

The value of the integral `int_0^1(dx)/(x^2+2xcosalpha+1)` is equal to (a)`sinalpha` (b) `alphasinalpha` (c)`alpha/(2sinalpha)` (d) `alpha/2sinalpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1-cos alpha)/(sinalpha)=tan(alpha/2)

The value of the definite integral int_0^1(1/(x^2+2xcosalpha+1))dx for 0 < alpha < pi is equal

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

The value of the integral int_0^pi (xdx)/(1+cosalphasinx),0ltaltpi is (A) (pia)/sinalpha (B) (pia)/(1+sinalpha) (C) (pia)/cosalpha (D) (pia)/(1+cosalpha)

If (2sinalpha)/(1+cosalpha+sinalpha) =x, then (1-cosalpha+sinalpha)/(1+sinalpha) =

If (2sinalpha)/(1+cosalpha+sinalpha)=x then find (1-cosalpha+sinalpha)/(1+sinalpha)

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If (2sinalpha)/({1+cosalpha+sinalpha})=y , then ({1-cosalpha+sinalpha})/(1+sinalpha) =