Home
Class 12
MATHS
Find the integral I=int((x+1)(x+log x)^(...

Find the integral `I=int((x+1)(x+log x)^(2))/(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

find int ((x +1) (x + log x)^2)/(x)dx

Evalute the following integrals int ((1 + log x)^(2))/(x ) dx

Evaluate : int((x+1)(x+log x) 2)/(x)dx

Evaluate the following integrals: int_(1)^(2)(1)/(x(1+log x)^(2))dx

Evalute the following integrals int (1)/(x) ("log x")^(2) dx

The value of the integral int (dx)/(x (1 + log x)^(2)) is equal to

Evaluate the integral int_(0)^(1) (log(1+x))/(1+x^(2))dx

Evaluate the following definite integral: int_(1)^(3)(log x)/((x+1)^(2))dx

Evaluate the following Integrals. int x (log x)^(2) dx

Evaluate the following Integrals. int x (log x)^(2) dx