Home
Class 12
MATHS
यदि "tan"^(-1)x+"tan"^(-1)y+"tan"^(-1)z=...

यदि `"tan"^(-1)x+"tan"^(-1)y+"tan"^(-1)z=pi` तो सिद्ध कीजिए कि `x+y+z=xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If "tan"^(-1) x +"tan" ^(-1) y +"tan"^(-1)z -pi show that x+y+z=xyz.

If "tan"^(-1)x+"tan"^(-1)y+"tan"^(-1)z=pi/(2) , show that xy+yz+zx=1

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

Prove the followings : If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(-1)x +tan^(-1) y +tan^(-1) z=pi/2 . Show that xy+yz+zx =1.