Home
Class 12
MATHS
If volume of parallelopiped whose there ...

If volume of parallelopiped whose there coterminous edges are `vec u = hat i + hat j + lambda hat k, vec v = 2 hati + hat j + hatk, vecw = hati+hatj+3hatk`, is 1 cubic unit then cosine of angle between `vec u` and `vecv` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a= hat i+ hat j+ hat k ,\ vec b= hat i- hat j+ hat k ,\ vec c= hat i+2 hat j- hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=hat i+hat j+hat k,vec b=hat i-hat j+hat k,vec c=hat i+2hat j-hat k

If vec a = -hat i+hat j+2 hat k, vec b= 2 hati- hatj- hat k , and vec c = -2hat i+hat j+3 hatk then find the angle between 2 vec a- vec c and veca+ vecb .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i+3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j+2 hat k .

Find the volume of the parallelepiped whose coterminous edges are represented by the vector: vec a=2 hat i-3 hat j+4 hat k ,\ vec b= hat i+2 hat j- hat k ,\ vec c=3 hat i- hat j-2 hat k .

Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors vec a = 2 hat i- 3 hat j + 4 hat k, vec b= hat i +2 hat j- hat k and vec c = 3 hat i -hat j +2 hat k .

Find the volume of the parallelopied whose co-terminus edges are represented by the vectors vec 1= 2 hat i+ hat j- hat k, vec 2,= hat i + hat 2j+ 3hat k and vec 3 =3 hat i - hat j+2 hat k

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors vec a = -3hat i+7 hat j + 5 hat k, vec b=-5 hat i +7 hat j- 3 hat k and vec c = 7 hat i -5 hat j -3 hat k .

Find the volume of a parallelopiped whose edges are represented by the vectors vec a = 2 hat i -3 hat j -4 hat k and vec b = hat i +2 hat j - hat k and vec c = 3 hat i + hat j + 2 hat k .