Home
Class 12
MATHS
If f(x)a n dg(x) are continuous functio...

If `f(x)a n dg(x)` are continuous functions, then `int_(1nlambda)^(1n1/lambda)(f((x^2)/4)[f(x)-f(-x)])/(g((x^2)/4)[g(x)+g(-x)])dxi s` (a)dependent on `lambda` (b) a none-zero constant (c)zero (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)a n dg(x) are continuous functions, then int_(1nlambda)^(1n1/lambda)(f((x^2)/4)[f(x)-f(-x)])/(g((x^2)/4)[g(x)+g(-x)])dx is (a)dependent on lambda (b) a none-zero constant (c)zero (d) none of these

If f(x) andg (x) are continuous functions,then int_(1n lambda)^(1n(1)/(lambda))(f((x^(2))/(4))[f(x)-f(-x)])/(g((x^(2))/(4))[g(x)+g(-x)])dxis (a)dependent on lambda( b) a none-zero constant (c)zero (d) none of these

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

int_(ln lambda)^(ln(1/lambda))(f(x^(2)/3)(f(x)+f(-x)))/(g(3x^(2))(g(x)-g(-x)))dx=

int_(ln lambda)^(ln (1/lambda)) (f(x^2/3)(f(x)+f(-x)))/(g(3x^2)(g(x)-g(-x))) dx=

Let f: RvecR a n d g: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)] dx is