Home
Class 11
MATHS
Let alpha,beta,gamma be the roots of the...

Let `alpha,beta,gamma` be the roots of the equation `8x^3 +1001x+ 2008=0` then the value `(alpha+beta)^3+(beta+gamma)^3+(gamma+alpha)^3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation x^3+x+1=0 , then the value of alpha^3+beta^3+gamma^3 is.

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are the roots of the equation x^3 - px^2 + qx +r=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha)=

If alpha,beta,gamma are the roots if the equation x^3-3x+11=0 then the equation whose roots are (alpha+beta),(beta+gamma),(gamma+alpha is

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=