Home
Class 11
MATHS
If A, B and C denote the angles of a tri...

If A, B and C denote the angles of a triangle, then
`Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)|` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-2,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If A,B and C are the angles of a triangle, then |[-1+cos B, cos C+ cos B, cos B],[cos C+ cos A,-1+cos A, cos A],[-1+cos B,-1+cos A,-1]|

If A ,\ B ,\ C are the angles of a triangle, prove that : cos A+cos B+cos C=1+r/Rdot

If A , Ba n dC are the angels of a triangle, show that |[-1+cos B, cos C+cos B, cos B],[ cos C+cos A,-1+cos A ,cos A],[-1+cos B,-1+cos A,-1]|=0

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

IF A,B,C are angles of a triangle , Prove that cos2A+cos 2B+cos 2C=-4cosAcosBcosC-1

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0