Home
Class 12
MATHS
For alpha > 0, let Lim(x->pi) (tan 2x)/(...

For `alpha > 0,` let `Lim_(x->pi) (tan 2x)/(x-pi) = Lim_(x->0) (1-сos 2alpha x)^2/x^4` then `alpha` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

For alpha>0, let lim_(x rarr pi)(tan2x)/(x-pi)=lim_(x rarr0)((1-cos2 alpha x)^(2))/(x^(4)) then alpha is equal to

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

lim_( x to (pi/(2)) (tan2x)/(x-(pi)/(2))

lim_(x rarr alpha)(tan x cot alpha)^((1)/(x-a)) is equal to

lim_(x->alpha)(tanxcotalpha)^(1/(x-alpha)) is equal to

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals

Let alpha, beta in R such that lim_(x ->0) (x^2sin(betax))/(alphax-sinx)=1 . Then 6(alpha + beta) equals