Home
Class 12
MATHS
Find the derivative with respect to x of...

Find the derivative with respect to `x` of `((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+a r csin(2x)/(1+x^2)` at `x=pi/4` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative with respect to x of ((log)_(cosx)sinx)((log)_(sinx)cosx)^(-1)+sin^(-1)((2x)/(1+x^2)) at x=pi/4 .

If y = (log_(cosx) sin x)(log_(sinx) cosx)^-1 + sin^-1((2x)/(1+x^2)) , find dy/dx at x = pi/4

Find the derivative of e^sinx.cosx with respect to x

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), find (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If y={(log)_(cosx)sinx}{(log)_(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)), fin d (dy)/(dx)a tx=pi/4

If log_(cosx)sinx+log_(sinx)cosx=2 , then x =

Find the derivative of cosx/(1+sinx) with respect to x.