Home
Class 12
MATHS
Consider the function y=f(x) satisfying ...

Consider the function `y=f(x)` satisfying the condition `f(x+1/x)=x^2+1//x^2(x!=0)dot` Then the domain of `f(x)i sR` domain of `f(x)i sR-(-2,2)` range of `f(x)i s[-2,oo]` range of `f(x)i s(2,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the (a) domain of f(x)i sR (b)domain of f(x)i sR-(-2,2) (c)range of f(x)i s[-2,oo] (d)range of f(x)i s(2,oo)

Consider the function y=f(x) satisfying the condition f(x+1/x)=x^2+1//x^2(x!=0)dot Then the a)domain of f(x)i sR b)domain of f(x)i sR-(-2,2) c)range of f(x)i s[-2,oo] d)range of f(x)i s(2,oo)

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

If a function f statisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2)) (x ne 0) then domain of f(x) is

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a)domain of f(x)i sR (b)domain of f(x)i s[-1,1] (c)range of f(x) is [-(2pi)/3,pi/3] (d)range of f(x)i sR

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a)domain of f(x)i sR (b)domain of f(x)i s[-1,1] (c)range of f(x) is [-(2pi)/3,pi/3] (d)range of f(x)i sR

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a) domain of f(x)i sR (b) domain of f(x)i s[-1,1] (c) range of f(x) is [-(2pi)/3,pi/3] (d) range of f(x)i sR

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a)domain of f(x)i sR (b)domain of f(x)i s[-1,1] (c)range of f(x) is [-(2pi)/3,pi/3] (d)range of f(x)i sR