Home
Class 11
MATHS
lim(x->0) (2^(x-1)+1/2)^(1/x) =...

`lim_(x->0) (2^(x-1)+1/2)^(1/x) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Evaluate: lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(x->0) (x^2-3x+1)/(x-1)

lim_(x rarr0)(2^(x-1)+(1)/(2))^((1)/(x))

lim_(x rarr 0) (2^(x)-1)/((1+x) ^ (1/2) -1) =

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)