Home
Class 12
MATHS
If f(x) = e^x, then lim(x->oo) f(f(x))...

If `f(x) = e^x`, then `lim_(x->oo) f(f(x))^(1/({f(x)}))`; is equal to (where `{x}` denotes fractional part of x).

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f (x)= tan/x, then the value of lim_(x->oo) ([f(x)]+x^2)^(1/({f(x)})) is equal to (where [.] , {.} denotes greatest integer function and fractional part functions respectively) -

The domain of f(x)=log_(e)(1-{x}); (where {.} denotes fractional part of x ) is

Domain of f(x)=(1)/(sqrt({x+1}-x^(2)+2x)) where {} denotes fractional part of x.

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to