Home
Class 12
MATHS
lim(x->0)(1/x)^(sinx)...

`lim_(x->0)(1/x)^(sinx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a)-1 (b) 1 (c) 0 (d) does not exist

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

Find the value of lim_(x->0)(1/sinx-1/x)

Find the value of lim_(x->0)(1/sinx-1/x)

Evaluate : lim_( x -> 0 ) ( 1/sinx - 1/x )

Evaluate the limits, if exist (lim)_(x->0)(e^(sinx)-1)/x

Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x

Evaluate the following limit: (lim)_(x->0)(e^(sinx)-1)/x

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2