Home
Class 12
MATHS
lim(x->0)((2^(sinx)-1)*ln(1+sin2x))/(x(a...

`lim_(x->0)((2^(sinx)-1)*ln(1+sin2x))/(x(a r c t a n x))` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)x(a r c t a n(x+1)/(x+2)-a r c t a n x/(x+2)) is equal to

lim_(x->0)(e^log(2^x-1)^x-(2^x-1)^(x)*sinx))/(e^(xlogx)) is equal to

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

lim_(x rarr0)(sqrt(1+sin3x)-1)/(log(1+tan2x))

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

lim_(x->0)(1+sinx-cosx+ln(1-x))/(x*tan^2x) using LHospitals Rule

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to